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Distributional composition as 
contextualisation

• Refers to the specific meaning of a lexeme in context  

• A polysemous lexeme can be sense discriminated 
based on the context in which it occurs 

- e.g. river bank vs. bank account 

• Distributional composition can act as a sense 
discriminator 

• No need for a priori disambiguation
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Experimental Setup
• Evaluation on a standard phrase similarity task 

(Mitchell & Lapata, 2010), and a novel word sense 
discrimination task 

• Comparing off-the-shelf word embeddings 

- word2vec (Mikolov et al., 2013) 

- dep2vec (Levy & Goldberg, 2014) 

- SensEmbed (Iacobacci et al., 2015)
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Phrase Similarity (1)

• Compare AN, NN, VO phrase pairs to human 
similarity judgements (Mitchell & Lapata, 2010) 

• High-frequency lexemes with some degree of 
polysemy (e.g. “company” or “state”) 

• Composition by pointwise addition for all models 

• Closest sense strategy for SensEmbed
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Phrase Similarity (2)
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Model AN NN VO Average

word2vec 0.47 0.46 0.45 0.46

dep2vec 0.48 0.46 0.45 0.46

SenseEmbed:max 0.39 0.39 0.32 0.37



Phrase Similarity (3)
• Pointwise addition with word2vec and dep2vec 

works very well 

• Closest sense strategy (max) tends to overestimate 
similarities, problematic for dissimilar phrase pairs 

• Performance of SensEmbed can be improved by 
using the mean instead of max, but it is still worse 
than word2vec and dep2vec 

• Distributional composition as contextualisation
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• Example: 

• Target: The head of state was under pressure. 

• Option 1: He got hit right in the head. 

• Option 2: I was pulled in by the head of HR. 

• Goal is to identify the Option 2 as expressing the same sense of head as 
the given target sentence 

• Different task setups of varying difficulty (2-5 senses) 

• Data for 3 different parts of speech (Adjectives, Nouns, Verbs) 

• Accuracy as evaluation metric
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Word Sense Discrimination (1)
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Word Sense Discrimination (2)
2 senses

(#dev/#test) 3 senses 4 senses 5 senses

Adjectives 66/209 47/170 37/137 28/115

Nouns 170/618 125/499 100/412 74/345

Verbs 127/438 71/354 72/295 56/256

Total 363/1265 263/1023 209/844 164/716



Word Sense Discrimination (3)
• Identify that two polysemous lexemes express the same 

sense 

• No sense induction step  

• No sense labelling step 

• Example sentences taken from english dictionaries  

• Sentential context provides enough information to 
discriminate the expressed sense of a polysemous lexeme 

• Good testbed for evaluating contextualisation
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Word Sense Discrimination (4)

All differences significant at the p < 0.01 level
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Word Sense Discrimination (4)

All differences significant at the p < 0.01 level
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Word Sense Discrimination (4)

Differences significant w.r.t. to Word Overlap at the p < 0.01 level for 2,3 & 5 senses; significant at p < 0.05 for 4 senses
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Word Sense Discrimination (4)

Differences significant w.r.t. to Word Overlap at the p < 0.01 level



• Pointwise addition with word2vec and dep2vec 
works very well 

• No benefit from sense-level representations   

• Distributional composition as contextualisation
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Word Sense Discrimination (5)
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Distributional composition as 
contextualisation (1)

• Pointwise addition in neural word embeddings 
approximates a feature intersection (Tian et al., 
2015) 

• Different senses of a polysemous lexeme reside in 
a linear substructure of the embedding (Arora et 
al., 2016) 

• Sense specific meaning recoverable by 
composition
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Distributional composition as 
contextualisation (2)
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Phrase word2vec SensEmbed

desert rock
rock, desert, rocks, 
desolate expanse, arid 
desert

desert, rock, the desert, 
deserts, badlands

rock band rock, band, rockers, 
bands, indie rock

band, rock, group, the 
band, rock group

river bank bank, river, creek, lake, 
rivers

bank, river, stream, creek, 
river basin

bank account account, bank, accounts, 
banks, citibank

bank, banks, the bank, 
pko bank polski, handlowy
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Summary

• Distributional composition is contextualisation 

• Composition acts as a sense discriminator and is 
able to recover sense specific information 
remarkably well 

• Open question how to best leverage sense 
embeddings for distributional composition
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Q & A

• Contact: t.kober@sussex.ac.uk 

• Task: https://github.com/tttthomasssss/sense2017

28

https://github.com/tttthomasssss/sense2017
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