Optimising Agile Social Media Analysis

Thomas Kober <u>t.kober@sussex.ac.uk</u> David Weir <u>d.j.weir@sussex.ac.uk</u>

University of Sussex

Outline

- Introduction & Methodology
- Practical Aspects
- Optimising Agile Social Media Analysis
- Conclusion & Outlook

Outline

Introduction & Methodology

- Practical Aspects
- Optimising Agile Social Media Analysis
- Conclusion & Outlook

Introduction

- Agile Social Media Analysis
 - Building bespoke classifiers for performing specific analyses on user-defined topics on large social media datasets.

Introduction

- Agile Social Media Analysis
 - Building bespoke classifiers for performing specific analyses on user-defined topics on large social media datasets.

• Probably better explained with an example...

- A typical scenario...
 - ...involves a "Twitcident", e.g. a political leader giving a speech

- A typical scenario...
 - ...involves a "Twitcident", e.g. a political leader giving a speech
- The goal is to analyse the reactions to this speech
 - What contents caused the most controversy?
 - Why are these topics so fiercely debated?
 - Are reactions to a specific topic mostly positive or negative?

 A political scientist wants to analyse the reactions to a speech given by British Prime Minister David Cameron the previous night

- A political scientist wants to analyse the reactions to a speech given by British Prime Minister David Cameron the previous night
- She queries the Twitter API with "Cameron" to retrieve an initial dataset

University of Sussex

University of Sussex

In the beginning the dataset is a "heterogenous mass of text"

- In the beginning the dataset is a "heterogenous mass of text"
- Very limited appreciation of the contents of the data in the beginning

- In the beginning the dataset is a "heterogenous mass of text"
- Very limited appreciation of the contents of the data in the beginning
- No labelled data

- In the beginning the dataset is a "heterogenous mass of text"
- Very limited appreciation of the contents of the data in the beginning
- No labelled data
- No off the shelf dataset/classifier that can be used for the target analysis

Supervised Machine Learning meets agile Social Media Analysis...

Performing Sentiment Analysis on this initially retrieved dataset will give poor results

- Performing Sentiment Analysis on this initially retrieved dataset will give poor results
- And more importantly, no actual insight into people's reaction to the debate

- Performing Sentiment Analysis on this initially retrieved dataset will give poor results
- And more importantly, no actual insight into people's reaction to the debate
- Need a tailored multi-stage processing pipeline and direct interaction with the data

• First step is to train a classifier for relevancy classification

- First step is to train a classifier for relevancy classification
 - This classifier will only be used for *this single task*

- First step is to train a classifier for relevancy classification
 - This classifier will only be used for *this single task*
 - Start with a random sample from the initially retrieved tweets and label a gold standard set

- First step is to train a classifier for relevancy classification
 - This classifier will only be used for *this single task*
 - Start with a random sample from the initially retrieved tweets and label a gold standard set
 - Labelling a gold standard set also serves to *explore the data space*

- First step is to train a classifier for relevancy classification
 - This classifier will only be used for *this single task*
 - Start with a random sample from the initially retrieved tweets and label a gold standard set
 - Labelling a gold standard set also serves to *explore the data space*
 - The prevalent subtopics "personality", "migrant crisis" and "EU referendum" are identified

- First step is to train a classifier for relevancy classification
 - This classifier will only be used for *this single task*
 - Start with a random sample from the initially retrieved tweets and label a gold standard set
 - Labelling a gold standard set also serves to *explore the data space*
 - The prevalent subtopics "personality", "migrant crisis" and "EU referendum" are identified
 - After the gold standard is labelled, active learning is used to train a classifier

- First step is to train a classifier for relevancy classification
 - This classifier will only be used for *this single task*
 - Start with a random sample from the initially retrieved tweets and label a gold standard set
 - Labelling a gold standard set also serves to *explore the data space*
 - The prevalent subtopics "personality", "migrant crisis" and "EU referendum" are identified
 - After the gold standard is labelled, active learning is used to train a classifier
 - The classifier is applied to the dataset, only the relevant tweets are used for further processing steps

 Create another bespoke classifier to split the relevant tweets into the 3 identified prevalent subtopics
- Create another bespoke classifier to split the relevant tweets into the 3 identified prevalent subtopics
 - Same workflow, label a gold standard from a random sample, then use active learning to train a classifier

- Create another bespoke classifier to split the relevant tweets into the 3 identified prevalent subtopics
 - Same workflow, label a gold standard from a random sample, then use active learning to train a classifier
- Finally, Sentiment Analysis can be performed on each of the 3 subtopics separately

• The result is a highly specialised classification pipeline tailored for a specific and granular analysis of an event

- The result is a highly specialised classification pipeline tailored for a specific and granular analysis of an event
- Direct Interaction with the data is crucial
 - Discover what the data is about
 - Tailor the analysis to the given data

- The result is a highly specialised classification pipeline tailored for a specific and granular analysis of an event
- Direct Interaction with the data is crucial
 - Discover what the data is about
 - Tailor the analysis to the given data
- Fast hypothesis testing

University of Sussex

- System reports performance on gold standard set after each retraining step
- "Fail Fast" if the data doesn't align with the target labels

Outline

- Introduction & Methodology
- Practical Aspects
- Optimising Agile Social Media Analysis
- Conclusion & Outlook

Outline

- Introduction & Methodology
- Practical Aspects
- Optimising Agile Social Media Analysis
- Conclusion & Outlook

- General classifier training architecture based on DUALIST
 - Combines a classifier, a semi-supervised learning algorithm and active learning into an application

- General classifier training architecture based on DUALIST
 - Combines a classifier, a semi-supervised learning algorithm and active learning into an application
- Our system, method51, has been extended in several ways (Wibberley et al. 2013; Wibberley et al. 2014)
 - Querying the Twitter API
 - Gold Standard Sampling
 - Measuring Inter-Annotator Agreement
 - Classifier pipelining

- General classifier training architecture based on DUALIST
 - Combines a classifier, a semi-supervised learning algorithm and active learning into an application
- Our system, method51, has been extended in several ways (Wibberley et al. 2013; Wibberley et al. 2014)
 - Querying the Twitter API
 - Gold Standard Sampling
 - Measuring Inter-Annotator Agreement
 - Classifier pipelining

University of Sussex

• New bespoke classifiers can be built in ~15-30mins

method51 - Classifier Pipeline

method51 - Classifier Pipeline

Figure 1: Processing Pipeline Interface

Label		Precision	Recall	F-Score	Accuracy	Coded	Label Multiplie		ər	Alpha	Action
positive	Sample	0.447	0.602	0.513		724	1]			Process
negative	Sample	0.768	0.849	0.806		1371	1]			Process
neutral	Sample	0.667	0.305	0.419		519	1]			Process
Unlabelled		9716	Features	76	0.672		Standard EM •		•	10	sent out 123
10 • reco	ords per page						Search	n:			
nowing 611 to	620 of 2,624	entries				← Previous 60 61		61	62	63 6	4 Next -
Document											
Y And farage responds with Latin. Nice #LBCdebate								1	positive	negat	ive neutral
@Nigel_Farage go for it, most of us (workers) we want out.								(positive	negal	ive neutral
Did Farage have a curry before he went on? Sweating buckets. #LBCdebate									positive	negat	ive neutral
										1	

Figure 2: Classifier Training Interface

Query user to label Tweets

Outline

- Introduction & Methodology
- Practical Aspects
- Optimising Agile Social Media Analysis
- Conclusion & Outlook

Outline

- Introduction & Methodology
- Practical Aspects
- Optimising Agile Social Media Analysis
- Conclusion & Outlook

Focus of this Paper

Focus of this Paper

• Optimise the classification engine (classifier and semi-supervised learning algorithm)

Focus of this Paper

- Optimise the classification engine (classifier and semi-supervised learning algorithm)
- Major challenge: Improve classification effectiveness by maintaining real-time userinteraction

• Baseline: Multinomial NB + Expectation Maximization

- Baseline: Multinomial NB + Expectation Maximization
- Parameterisation and selection of the Naive Bayes event model
 - Bernoulli
 - Multinomial
 - binary Multinomial

- Baseline: Multinomial NB + Expectation Maximization
- Parameterisation and selection of the Naive Bayes event model
 - Bernoulli

University of Sussex

- Multinomial
- binary Multinomial
- Semi-supervised learning algorithms comparison
 - Expectation-Maximization (EM); e.g. Nigam et al. (1999)
 - Semi-supervised Frequency Estimate (SFE); Su et al. (2011)
 - Feature Marginals (FM); Lucas & Downey (2013)

- The effect of unlabelled data
 - Do unlabelled data help?
 - How much of the unlabelled data is necessary?

- The effect of unlabelled data
 - Do unlabelled data help?
 - How much of the unlabelled data is necessary?
- The effect of adding bigrams and trigrams

Evaluation

Evaluation

- 24 Twitter Datasets
 - 12 Topic Classification, 12 Sentiment Analysis
 - Variety of topics ranging from political debates and extremism to natural disasters (among others)
 - Very few labelled data (~hundreds)
 - Large amount of unlabelled data (~tens to hundreds of thousands)
Evaluation

- 24 Twitter Datasets
 - 12 Topic Classification, 12 Sentiment Analysis
 - Variety of topics ranging from political debates and extremism to natural disasters (among others)
 - Very few labelled data (~hundreds)
 - Large amount of unlabelled data (~tens to hundreds of thousands)
- Movie Reviews (Maas et al. 2011)

Evaluation

- 24 Twitter Datasets
 - 12 Topic Classification, 12 Sentiment Analysis
 - Variety of topics ranging from political debates and extremism to natural disasters (among others)
 - Very few labelled data (~hundreds)
 - Large amount of unlabelled data (~tens to hundreds of thousands)
- Movie Reviews (Maas et al. 2011)
- 20 Newsgroups (Lang 1995)

University of Sussex

Thomas Kober and David Weir - Optimising Agile Social Media Analysis

- Parameterisation and selection of the Naive Bayes event model
 - binary Multinomial NB and Bernoulli NB typically outperform Multinomial NB
 - No clear winner between binary Multinomial NB and Bernoulli NB
 - Findings align with previous studies

- Parameterisation and selection of the Naive Bayes event model
 - binary Multinomial NB and Bernoulli NB typically outperform Multinomial NB
 - No clear winner between binary Multinomial NB and Bernoulli NB
 - Findings align with previous studies
- Semi-supervised learning algorithms comparison
 - SFE and FM outperform our EM baseline
 - EM with weighting heuristic is competitive with (and often superior to) SFE and FM
 - Baseline configuration outperformed on 24 out of 26 datasets (Performance gains up to 25%)

• Semi-supervised learning algorithms comparison

- Semi-supervised learning algorithms comparison
 - Bad performance of Baseline EM configuration mainly due to assigning too much weight to the unlabelled data

- Semi-supervised learning algorithms comparison
 - Bad performance of Baseline EM configuration mainly due to assigning too much weight to the unlabelled data
 - Performance among other algorithms inconsistent (differences of up to ~8% between algorithms on the same dataset)

Thomas Kober and David Weir - Optimising Agile Social Media Analysis

- Semi-supervised learning algorithms comparison
 - Bad performance of Baseline EM configuration mainly due to assigning too much weight to the unlabelled data
 - Performance among other algorithms inconsistent (differences of up to ~8% between algorithms on the same dataset)
 - Not entirely clear if it is a data or a hyperparameter phenomenon

University of Sussex

Thomas Kober and David Weir - Optimising Agile Social Media Analysis

• The effect of unlabelled data

- The effect of unlabelled data
 - Adding unlabelled data typically improves performance over a purely supervised approach (but not always!)

- The effect of unlabelled data
 - Adding unlabelled data typically improves performance over a purely supervised approach (but not always!)
 - The *amount* of unlabelled data being added can have a significant effect

Figure 4: The effect of unlabelled data

Thomas Kober and David Weir - Optimising Agile Social Media Analysis

Thomas Kober and David Weir - Optimising Agile Social Media Analysis

• The effect of unlabelled data

- The effect of unlabelled data
 - Performance of baseline configuration sensitive to amount of data

- The effect of unlabelled data
 - Performance of baseline configuration sensitive to amount of data
 - SFE & FM stabler, but also show sensitivity to amount of data

- The effect of unlabelled data
 - Performance of baseline configuration sensitive to amount of data
 - SFE & FM stabler, but also show sensitivity to amount of data
 - EM with weighting heuristic very stable

- The effect of unlabelled data
 - Performance of baseline configuration sensitive to amount of data
 - SFE & FM stabler, but also show sensitivity to amount of data
 - EM with weighting heuristic very stable
 - Too stable unlabelled data not used effective enough

Thomas Kober and David Weir - Optimising Agile Social Media Analysis

Thomas Kober and David Weir - Optimising Agile Social Media Analysis

• The effect of adding bigrams and trigrams

- The effect of adding bigrams and trigrams
 - Contrary to a recent study, we did not observe any consistent improvements by adding bigrams and trigrams in our datasets (neither for Topic Classification, nor for Sentiment Analysis)

- The effect of adding bigrams and trigrams
 - Contrary to a recent study, we did not observe any consistent improvements by adding bigrams and trigrams in our datasets (neither for Topic Classification, nor for Sentiment Analysis)
 - We observed the inconsistent behaviour in both, supervised and semisupervised settings

- The effect of adding bigrams and trigrams
 - Contrary to a recent study, we did not observe any consistent improvements by adding bigrams and trigrams in our datasets (neither for Topic Classification, nor for Sentiment Analysis)
 - We observed the inconsistent behaviour in both, supervised and semisupervised settings
 - A possible explanation could be the usage of multi-word hashtag expressions, e.g. "#CameronMustGo" or "#CareNotCuts", which convey crucial sentiment information but are treated as unigrams

- The effect of adding bigrams and trigrams
 - Contrary to a recent study, we did not observe any consistent improvements by adding bigrams and trigrams in our datasets (neither for Topic Classification, nor for Sentiment Analysis)
 - We observed the inconsistent behaviour in both, supervised and semisupervised settings
 - A possible explanation could be the usage of multi-word hashtag expressions, e.g. "#CameronMustGo" or "#CareNotCuts", which convey crucial sentiment information but are treated as unigrams
 - Similarly, the Topic Classification corpora also contained such multi-word expressions, e.g. "#ArcticOil", that define the topic of a tweet

- The effect of adding bigrams and trigrams
 - Contrary to a recent study, we did not observe any consistent improvements by adding bigrams and trigrams in our datasets (neither for Topic Classification, nor for Sentiment Analysis)
 - We observed the inconsistent behaviour in both, supervised and semisupervised settings
 - A possible explanation could be the usage of multi-word hashtag expressions, e.g. "#CameronMustGo" or "#CareNotCuts", which convey crucial sentiment information but are treated as unigrams
 - Similarly, the Topic Classification corpora also contained such multi-word expressions, e.g. "#ArcticOil", that define the topic of a tweet
 - Therefore we hypothesise that bigrams and trigrams cannot be leveraged as effectively for Twitter datasets as for other datasets

Outline

- Introduction & Methodology
- Practical Aspects
- Optimising Agile Social Media Analysis
- Conclusion & Outlook

Outline

- Introduction & Methodology
- Practical Aspects
- Optimising Agile Social Media Analysis
- Conclusion & Outlook

 The aim of agile Social Media Analysis is to allow social scientists to build bespoke classifier pipelines to perform tailored analyses on large social media datasets

- The aim of agile Social Media Analysis is to allow social scientists to build bespoke classifier pipelines to perform tailored analyses on large social media datasets
- Our system leverages active learning and semi-supervised learning together with a Naive Bayes classifier to build custom classifiers for userdefined tasks

- The aim of agile Social Media Analysis is to allow social scientists to build bespoke classifier pipelines to perform tailored analyses on large social media datasets
- Our system leverages active learning and semi-supervised learning together with a Naive Bayes classifier to build custom classifiers for userdefined tasks
- With optimised hyper-parameters EM compares favourably to newer semisupervised learning algorithms

- The aim of agile Social Media Analysis is to allow social scientists to build bespoke classifier pipelines to perform tailored analyses on large social media datasets
- Our system leverages active learning and semi-supervised learning together with a Naive Bayes classifier to build custom classifiers for userdefined tasks
- With optimised hyper-parameters EM compares favourably to newer semisupervised learning algorithms
- Unlabelled data generally improve performance, but adding more data does not always mean better performance

- The aim of agile Social Media Analysis is to allow social scientists to build bespoke classifier pipelines to perform tailored analyses on large social media datasets
- Our system leverages active learning and semi-supervised learning together with a Naive Bayes classifier to build custom classifiers for userdefined tasks
- With optimised hyper-parameters EM compares favourably to newer semisupervised learning algorithms
- Unlabelled data generally improve performance, but adding more data does not always mean better performance
- Bigrams and trigrams cannot be as effectively leveraged in Twitter datasets as in other datasets

Thomas Kober and David Weir - Optimising Agile Social Media Analysis

- Investigation of the effect of different hyper-parameter settings
 - Can they be optimised automatically?
 - Can we find task or dataset invariant heuristics to optimise them?

- Investigation of the effect of different hyper-parameter settings
 - Can they be optimised automatically?
 - Can we find task or dataset invariant heuristics to optimise them?
- More effective use of unlabelled data
 - Can we identify a subset of unlabelled data that better aligns with the current analysis?

- Investigation of the effect of different hyper-parameter settings
 - Can they be optimised automatically?
 - Can we find task or dataset invariant heuristics to optimise them?
- More effective use of unlabelled data

University of Sussex

- Can we identify a subset of unlabelled data that better aligns with the current analysis?
- The role of opinionated multi-word hashtag expressions
 - What effect do they have in Sentiment Analysis?

Q & A

Contact:

Thomas Kober <u>t.kober@sussex.ac.uk</u> David Weir <u>d.j.weir@sussex.ac.uk</u>

Thomas Kober and David Weir - Optimising Agile Social Media Analysis

• Start with an initial model (e.g. trained on the available labelled data)

- Start with an initial model (e.g. trained on the available labelled data)
- Label the unlabelled data with this initial model
 - weighting of unlabelled data important
 - baseline uses a static weight of 0.1
 - We apply a heuristic which weights every unlabelled instance with [labelled data] / [unlabelled data]

- Start with an initial model (e.g. trained on the available labelled data)
- Label the unlabelled data with this initial model
 - weighting of unlabelled data important
 - baseline uses a static weight of 0.1
 - We apply a heuristic which weights every unlabelled instance with [labelled data] / [unlabelled data]
- Retrain model on *all* data

- Start with an initial model (e.g. trained on the available labelled data)
- Label the unlabelled data with this initial model
 - weighting of unlabelled data important
 - baseline uses a static weight of 0.1
 - We apply a heuristic which weights every unlabelled instance with [labelled data] / [unlabelled data]
- Retrain model on *all* data
- Iterate until stopping criterion is met
 - Typically until model parameters converged
 - We stop after 1 iteration (mainly for reasons of running time)

Thomas Kober and David Weir - Optimising Agile Social Media Analysis

- Bernoulli
 - Explicitely models the absence of a feature
 - Models the number of documents of class c containing feature f

- Bernoulli
 - Explicitely models the absence of a feature
 - Models the number of documents of class c containing feature f
- Multinomial
 - Absence of a feature implicitly modelled in class-conditional probabilities
 - Models the number of times feature f appears in documents of class c

- Bernoulli
 - Explicitely models the absence of a feature
 - Models the number of documents of class c containing feature f
- Multinomial
 - Absence of a feature implicitly modelled in class-conditional probabilities
 - Models the number of times feature f appears in documents of class c
- binary Multinomial
 - Same as Multinomial, but feature counts are capped at 1