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Agile Social Media Analysis
• A typical scenario… 

‣ …involves a “Twitcident”, e.g. a political leader giving a 
speech

• The goal is to analyse the reactions to this speech 

‣ What contents caused the most controversy? 

‣ Why are these topics so fiercely debated? 

‣ Are reactions to a specific topic mostly positive or 
negative?
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• A political scientist wants to analyse the reactions 
to a speech given by British Prime Minister David 
Cameron the previous night

• She queries the Twitter API with “Cameron” to 
retrieve an initial dataset
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Agile Social Media Analysis
• In the beginning the dataset is a “heterogenous 

mass of text”

• Very limited appreciation of the contents of the data 
in the beginning

• No labelled data

• No off the shelf dataset/classifier that can be used 
for the target analysis
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Agile Social Media Analysis

• Performing Sentiment Analysis on this initially 
retrieved dataset will give poor results 

• And more importantly, no actual insight into 
people’s reaction to the debate

• Need a tailored multi-stage processing pipeline 
and direct interaction with the data
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• First step is to train a classifier for relevancy classification

‣ This classifier will only be used for this single task

‣ Start with a random sample from the initially retrieved tweets and label a 
gold standard set

‣ Labelling a gold standard set also serves to explore the data space

‣ The prevalent subtopics “personality”, “migrant crisis” and “EU 
referendum” are identified 

‣ After the gold standard is labelled, active learning is used to train a 
classifier

‣ The classifier is applied to the dataset, only the relevant tweets are used 
for further processing steps
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• Create another bespoke classifier to split the 
relevant tweets into the 3 identified prevalent 
subtopics

‣ Same workflow, label a gold standard from a 
random sample, then use active learning to 
train a classifier

• Finally, Sentiment Analysis can be performed on 
each of the 3 subtopics separately
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Agile Social Media Analysis
• The result is a highly specialised classification pipeline tailored 

for a specific and granular analysis of an event

• Direct Interaction with the data is crucial 

‣ Discover what the data is about 

‣ Tailor the analysis to the given data

• Fast hypothesis testing 

‣ System reports performance on gold standard set after each retraining 
step 

‣ “Fail Fast” if the data doesn’t align with the target labels
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• Our system, method51, has been extended in several ways (Wibberley et al. 
2013; Wibberley et al. 2014) 

‣ Querying the Twitter API 

‣ Gold Standard Sampling 

‣ Measuring Inter-Annotator Agreement 

‣ Classifier pipelining

• New bespoke classifiers can be built in ~15-30mins
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Figure 1: Processing Pipeline Interface 



Thomas Kober and David Weir - Optimising Agile Social Media Analysis

method51 - Classifier 
Training

18

Figure 2: Classifier Training Interface 
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Focus of this Paper

• Optimise the classification engine (classifier and 
semi-supervised learning algorithm)

• Major challenge: Improve classification 
effectiveness by maintaining real-time user-
interaction
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• Baseline: Multinomial NB + Expectation Maximization

• Parameterisation and selection of the Naive Bayes event model 

‣ Bernoulli 

‣ Multinomial 

‣ binary Multinomial

• Semi-supervised learning algorithms comparison 

‣ Expectation-Maximization (EM); e.g. Nigam et al. (1999) 

‣ Semi-supervised Frequency Estimate (SFE); Su et al. (2011) 

‣ Feature Marginals (FM); Lucas & Downey (2013)
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natural disasters (among others) 

‣ Very few labelled data (~hundreds) 

‣ Large amount of unlabelled data (~tens to hundreds of 
thousands)

• Movie Reviews (Maas et al. 2011)

• 20 Newsgroups (Lang 1995)
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• Parameterisation and selection of the Naive Bayes event model 

‣ binary Multinomial NB and Bernoulli NB typically outperform Multinomial 
NB 

‣ No clear winner between binary Multinomial NB and Bernoulli NB 

‣ Findings align with previous studies

• Semi-supervised learning algorithms comparison 

‣ SFE and FM outperform our EM baseline 

‣ EM with weighting heuristic is competitive with (and often superior to) 
SFE and FM 

‣ Baseline configuration outperformed on 24 out of 26 datasets 
(Performance gains up to 25%)
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Findings & Results
• Semi-supervised learning algorithms comparison

‣ Bad performance of Baseline EM configuration 
mainly due to assigning too much weight to the 
unlabelled data

‣ Performance among other algorithms 
inconsistent (differences of up to ~8% between 
algorithms on the same dataset)

‣ Not entirely clear if it is a data or a hyper-
parameter phenomenon
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Findings & Results

• The effect of unlabelled data

‣ Adding unlabelled data typically improves 
performance over a purely supervised 
approach (but not always!)

‣ The amount of unlabelled data being added 
can have a significant effect
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Figure 4: The effect of unlabelled data 



Thomas Kober and David Weir - Optimising Agile Social Media Analysis

Findings & Results

30



Thomas Kober and David Weir - Optimising Agile Social Media Analysis

Findings & Results
• The effect of unlabelled data

30



Thomas Kober and David Weir - Optimising Agile Social Media Analysis

Findings & Results
• The effect of unlabelled data

‣ Performance of baseline configuration 
sensitive to amount of data

30



Thomas Kober and David Weir - Optimising Agile Social Media Analysis

Findings & Results
• The effect of unlabelled data

‣ Performance of baseline configuration 
sensitive to amount of data

‣ SFE & FM stabler, but also show sensitivity to 
amount of data

30



Thomas Kober and David Weir - Optimising Agile Social Media Analysis

Findings & Results
• The effect of unlabelled data

‣ Performance of baseline configuration 
sensitive to amount of data

‣ SFE & FM stabler, but also show sensitivity to 
amount of data

‣ EM with weighting heuristic very stable

30



Thomas Kober and David Weir - Optimising Agile Social Media Analysis

Findings & Results
• The effect of unlabelled data

‣ Performance of baseline configuration 
sensitive to amount of data

‣ SFE & FM stabler, but also show sensitivity to 
amount of data

‣ EM with weighting heuristic very stable

‣ Too stable - unlabelled data not used effective 
enough
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‣ Contrary to a recent study, we did not observe any consistent 
improvements by adding bigrams and trigrams in our datasets (neither 
for Topic Classification, nor for Sentiment Analysis)

‣ We observed the inconsistent behaviour in both, supervised and semi-
supervised settings

‣ A possible explanation could be the usage of multi-word hashtag 
expressions, e.g. “#CameronMustGo” or “#CareNotCuts”, which convey 
crucial sentiment information but are treated as unigrams

‣ Similarly, the Topic Classification corpora also contained such multi-word 
expressions, e.g. “#ArcticOil”, that define the topic of a tweet

‣ Therefore we hypothesise that bigrams and trigrams cannot be 
leveraged as effectively for Twitter datasets as for other datasets  
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supervised learning algorithms

• Unlabelled data generally improve performance, but adding more data 
does not always mean better performance 

• Bigrams and trigrams cannot be as effectively leveraged in Twitter 
datasets as in other datasets

34



Thomas Kober and David Weir - Optimising Agile Social Media Analysis

Outlook

35



Thomas Kober and David Weir - Optimising Agile Social Media Analysis

Outlook
• Investigation of the effect of different hyper-parameter settings 

‣ Can they be optimised automatically? 

‣ Can we find task or dataset invariant heuristics to optimise 
them?

35



Thomas Kober and David Weir - Optimising Agile Social Media Analysis

Outlook
• Investigation of the effect of different hyper-parameter settings 

‣ Can they be optimised automatically? 

‣ Can we find task or dataset invariant heuristics to optimise 
them?

• More effective use of unlabelled data 

‣ Can we identify a subset of unlabelled data that better aligns 
with the current analysis?

35



Thomas Kober and David Weir - Optimising Agile Social Media Analysis

Outlook
• Investigation of the effect of different hyper-parameter settings 

‣ Can they be optimised automatically? 

‣ Can we find task or dataset invariant heuristics to optimise 
them?

• More effective use of unlabelled data 

‣ Can we identify a subset of unlabelled data that better aligns 
with the current analysis?

• The role of opinionated multi-word hashtag expressions 

‣ What effect do they have in Sentiment Analysis? 
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EM in a nutshell
• Start with an initial model (e.g. trained on the available labelled data)

• Label the unlabelled data with this initial model 

‣ weighting of unlabelled data important 

‣ baseline uses a static weight of 0.1 

‣ We apply a heuristic which weights every unlabelled instance with |labelled 
data| / |unlabelled data|

• Retrain model on all data

‣ Iterate until stopping criterion is met 

‣ Typically until model parameters converged 

‣ We stop after 1 iteration (mainly for reasons of running time)
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Bernoulli vs. Multinomial
• Bernoulli 

‣ Explicitely models the absence of a feature 

‣ Models the number of documents of class c containing feature f

• Multinomial 

‣ Absence of a feature implicitly modelled in class-conditional 
probabilities 

‣ Models the number of times feature f appears in documents of class c

• binary Multinomial 

‣ Same as Multinomial, but feature counts are capped at 1
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