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• The datasets contain example sentences from different corpora.

• Each verb is annotated within the scope of a sentence, so some real-world 
context for the verb is available.

• We are only relying on distributional representations for words (e.g. from 
word2vec [Mikolov et al., 2013])
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• Then contextualise (i.e. compose) the target verb with its context through 
vector addition

• v(phrase-win) = v(decided) + v(Jane) + v(to)

• v(phrase-dep) = v(decided) + v(Jane) + v(leave)

• Subsequently use the resulting phrase vector as input to a classifier to predict 
whether decided is a state or an event (or alternatively a telic or an atelic 
event)
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• Hang on, we said context was important!

• So why is the verb-only model doing better than the rest?


• Looking at the data, we found that the majority of verbs was 
unambiguous w.r.t. its class 

• For example, “look" would only ever appear as event

• And “cover" would only ever appear as a state


• Thus, we created two new variants of the SitEnt and Telicity 
datasets, keeping only verbs that occur with both labels
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• Surprise, surprise - closed class words, e.g. prepositions (on, at, up), pronouns (I, They, It), 
etc.

• In general we found that closed class word contexts are actually better discriminators than 
content word contexts (i.e. other nouns, verbs or adjectives)

• For example:

Shane looked at his watch. (event)

She sure looks good. (state)

• The presence or absence of “at" really makes a difference.

• And more interestingly, the distributional vector representation for “at” is actually quite useful

• Don’t (always) throw away your stopwords!!!
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buy own
buy

visit arrive
win play

invade attack

acquire

• But what if we read “Josh will buy a car tomorrow.”?

• That means he doesn’t own one (yet)!

• But when we read “Josh has bought a car yesterday.”

• Then we can infer that he owns one.
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• v(present-perfect) = v(has) + v(bought)

• v(present-continuous) = v(is) + v(own)

• Then measure the distributional similarity between v(present-perfect) and v(present-continuous)

• If they exceed some threshold, we conclude that there is an Entailment Relation

• We’re saying that has bought and owns should receive similar representations because they can be 
used interchangeably w.r.t. Entailment Relations.

• Amazon has bought WholeFoods == Amazon owns WholeFoods

• Whereas something like will buy and is owning can’t be used without changing the meaning of a 
sentence.

• Google will buy AirBnB != Google owns AirBnB
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thought of being so (in)tense with Entailments

• Evaluation based on a Precision/Recall curve with varying thresholds 

• Comparing the verb + auxiliary in original form (has bought vs. is 
owning), the verb in original form without auxiliary (bought vs. owning) 
and the verb in lemmatised form with auxiliary (have buy vs. be own)

• The first baseline (no auxiliary, original form) tests whether 
composition is necessary to solve the problem

• The second baseline tests whether information about tense is 
captured by the distributional model per se
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Tensing up Entailments - 
Results

• So as a preliminary conclusion we could say that

• Distributional models capture a good deal about the 
semantics of tense

• Distributional composition is a reasonable way to model 
tensed verbs

• Compositional Distributional Semantics can model (to 
some extent)Tensed Entailment Relations

• And thats pretty cool, actually
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Conclusion
• Entailments as the stepping stone towards Form-Independent 

Semantics

• Verbs are quite complex, really

• Aspect (substantial influence on a verb’s Entailment behaviour)

• Tense (substantial influence on a verb’s Entailment behaviour)

• Distributional Semantic Vector Space Models capture information 
about both linguistic concepts

• Distributional Composition can be leveraged to recover even more 
information
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