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Distributional Semantics
• Distributional Hypothesis

• Similar words occur in similar contexts ("You shall know...")

• Underlying idea can be traced back starting from Harris 
(1954) and Firth (1962), via Firth (1935), to Saussure 
(1916). Also Wittgenstein (1953) had thoughts along 
similar lines.

• First to be interested in comparing words distributionally 
were probably Church and Hanks (1989) and Hindle 
(1990)
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Distributional Composition
• Capturing complex semantic phenomena in word space

• Would be nice if there was a general mechanism to combine elementary 
representations into longer phrases

• Different ideas proposed:

• adding/multiplying (Mitchell and Lapata, 2008; 2010; Zanzotto et al., 
2010; Guevara 2010; 2011)

• Formal Semantics (Baroni and Zamparelli, 2010; Coecke et al., 2011)

• Neural Networks (Socher et al., 2012; 2014; Kalchbrenner et al., 
2014; Tai et al., 2015; 10000s more)

• Anchored Packed Trees (Weir et al., 2016)
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Distributional Composition
• But what does it actually mean?

• Distributional composition as contextualisation

• The meaning of a lexeme in a particular 
context

• Composition can recover sense specific 
information (Kober et al., 2017a): bank 
account vs. river bank
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• They are **not** vectors

• (But sometimes it can be useful to vectorise them 
or think of them as vectors)
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• Typed DSMs (such as APTs) give rise to a 
neighbourhood governed by co-hyponymy (e.g. 
dog - cat) and hypernymy (e.g. animal - dog) 

• Untyped DSMs (such as word2vec) give rise to a 
neighbourhood governed by relatedness (e.g. bee 
- honey; dog - kennel) or meronymy (e.g. dog - tail)

• See e.g. Peirsman (2008), Baroni and Lenci (2011), 
Levy and Goldberg (2014) for work on typed vs. 
untyped DSMs
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APT composition
• Composition in APTs is structured and driven by the given 

dependency tree

• Due to the structure, the feature spaces of adjectives and 
nouns are incompatible

• E.g. many paths for nouns start with amod, but this 
doesn't happen for verbs or adjectives

• Need to align the representations first

• Lets vectorise the feature space to make it more obvious!
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white clothes

amod

white clothes
:clean amod:wet
amod:shoes :dress
amod.dobj:wear dobj:wear
amod.nsubj:earn nsubj:admit

Paths don't a
lign!
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APT composition
• Feature spaces between different parts of speech do not align

• Need to align two representations in order to leverage their 
distributional commonalities

• Alignment can be achieved by "offsetting" one of the 
constituents

• Either offset white to make it a noun or offset clothes to make it 
an adjective

• We offset the dependent (so white) in a given dependency 
relation 
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:clean amod:clean amod:wet
amod:shoes :shoes :dress
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The issue of sparsity
• Model sparsity vs. Data sparsity

• Model sparsity: discriminative and explicit (and 
therefore interpretable) representation

• Data sparsity: Not observing all plausible co-
occurrences in the given corpus

• APTs are a sparse model by design

• This work addresses the data sparsity problem
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The issue of data sparsity
• Caused by incomplete data in any collection

• Especially problematic for intersective composition 
functions

• If we compose intersectively a few times, we might end up 
with nothing left in the intersection

• Composition by union avoids that, but lacks the 
discriminative power of composition by intersection 

• If we apply composition by union a few times, we might 
end up with everything (or at least too much)
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Why not just use 
dimensionality reduction?

• Could do but...

• APT composition relies on offsetting to align two 
lexemes in a given dependency relation

• [As of now] There is no low-dimensional 
counterpart to achieve this precise operation

• If the individual dimensions are not explicit, APTs 
degrade to just adding vectors
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Enter Distributional Inference
• Basic idea originates from language modelling in the speech 

processing community (Essen and Steinbiss, 1992)

• Smoothing bigrams with unseen words

• Picked up by Dagan et al. (1993) for WSD and Dagan et al. (1994) 
for LM

• We in turn picked it up for distributional composition (Kober et al., 
2016)

• Though there are traces of it in earlier work on composition 
(Kintsch, 2001) as well as modelling semantic relations (Turney, 
2006) and modelling word meaning in context (Erk and Pado, 
2010)
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Distributional Inference
• For any word w in a distributional model M

• Find the n nearest neighbours, w', of w

• Combine w and w' (and re-scale appropriately)

• Profit!

• ...or at least improved performance on some task

 29



Distributional Inference

 30



Distributional Inference

 30

Dataset APTs APTs + DI VSM VSM + DI



Distributional Inference

 30

Dataset APTs APTs + DI VSM VSM + DI

MEN 0,63 0.67 (+0.04) 0,71 0.71 (+0.00)



Distributional Inference

 30

Dataset APTs APTs + DI VSM VSM + DI

MEN 0,63 0.67 (+0.04) 0,71 0.71 (+0.00)

SimLex 0,30 0.32 (+0.02) 0,30 0.29 (-0.01)



Distributional Inference

 30

Dataset APTs APTs + DI VSM VSM + DI

MEN 0,63 0.67 (+0.04) 0,71 0.71 (+0.00)

SimLex 0,30 0.32 (+0.02) 0,30 0.29 (-0.01)

WS353 (rel) 0,55 0.62 (+0.07) 0,60 0.64 (+0.04)



Distributional Inference

 30

Dataset APTs APTs + DI VSM VSM + DI

MEN 0,63 0.67 (+0.04) 0,71 0.71 (+0.00)

SimLex 0,30 0.32 (+0.02) 0,30 0.29 (-0.01)

WS353 (rel) 0,55 0.62 (+0.07) 0,60 0.64 (+0.04)

WS353 (sub) 0,75 0.78 (+0.03) 0,70 0.73 (+0.03)
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ML10 Task APTs APTs + DI VSM VSM + DI

AN 0,38 0.50 (+0.12) 0,42 0.46 (+0.04)

NN 0,44 0.49 (+0.05) 0,45 0.48 (+0.03)

VO 0,36 0.43 (+0.07) 0,39 0.40 (+0.01)

Average 0,39 0.47 (+0.08) 0,42 0.45 (+0.03)
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Distributional Inference
• Really important to get composition by intersection 

working

• Effect on composition by union was mildly positive for 
APTs (but not to such an extend as for composition by 
intersection)

• Interesting relation between composition and inference 
- for window based VSMs, its the same operation

• Not yet for APTs, but if we leverage offsets...
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• Infer distributional information from "other things that can be 
white" (Kober et al., 2017b)
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Offset Representation Nearest Neighbours
ancient civilisation, mythology, tradition, ruin, monument
red blue       , black       , green       , dark       , onion
economic political      , societal      , cohabiting, economy, growth
government overthrow, party       , authority       , leader
problem difficulty       , solve, coded, issue      , injury
law violate, rule       , enact, repeal, principle
researcher physician        , writer        , theorize, thwart, theorise
mother wife        , father         , parent         , woman
law rule        , principle        , policy        , criminalize

amod

amod

amod

dobj

dobj

dobj

nsubj

nsubj

nsubj

amod amod amod amod

amod amod

dobj dobj dobj

dobj dobj dobj

dobj dobj

nsubj nsubj

nsubj nsubj nsubj nsubj
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Offset Inference
• Generalises the Distributional Inference algorithm, which 

falls out as a special case

• For any word w in the APT space M

• Offset w by some dependency path p to get w'

• Find the n nearest neighbours, w'', of w'

• Combine w' and w'' (and re-scale appropriately)

• If p == ε, the original DI algorithm is recovered (Kober et 
al., 2017b)
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Dataset APTs APTs + DI APTs + OI

ML10 - AN 0,35 0,48 0.49 (+0.01)

ML10 - NN 0,50 0,51 0.52 (+0.01)

ML10 - VO 0,39 0,43 0.44 (+0.01)

ML10 - Average 0,41 0,47 0.48* (+0.01)

ML08 0,22 0,29 0.31* (+0.02)
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Offset Inference
• Improvements are not striking in magnitude, but...

• Consistent and statistically significant improvements

• Powerful concept, can travel the APT structure inferring 
unobserved co-occurrences at different nodes

• Could also be done offline, but so far this didn't yield any 
improvements

• Realised by the same mechanism as composition

• An offset followed by a merge

 39
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Relation to Distributional 
Composition

• Works complementary with an intersective composition function

• Co-occurrence embellishment and filtering

• Distributional Inference embellishes an APT 
representation, at the cost of introducing some noise

• Distributional Composition filters an APT representation, at 
the cost of removing some plausible information (data 
sparsity!)

• Potential to scale to longer phrases with an intersective 
composition function before running out of features
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• The number of neighbours is the only hyperparameter that 
needs tuning
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Limitations of Distributional 
Inference

• But getting the number of neighbours right can be 
crucial

• Too many neighbours leads to an overflow of the 
representations with noise

• Without a "post-processing step" (such as composition) 
to clean up the representations, this could lead to a 
mess

• Still difficult to scale beyond short sentences with an 
intersective composition function
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Thats it!

Or ask some ques…cake…did somebody mention cake?!



Thats it!

Or ask some ques…cake…did somebody mention cake?!
(You can also email me - t.kober@sussex.ac.uk - and I might 

even reply!)

mailto:t.kober@sussex.ac.uk
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