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white clothes

amod

clothes: amod:white

• Inverse dependencies:

white clothes

amod

white: amod:clothes

Inverse amod

• Higher-order dependencies: Higher order path

“white things can be worn”
white clothes

amod

white: amod.dobj:wearwear

dobj



What are APTs?

!7



What are APTs?

!7

we        folded        the        dry        clean        clothes



What are APTs?

!7

we        folded        the        dry        clean        clothes

we        bought        white        shoes        yesterday



What are APTs?

!7

we        folded        the        dry        clean        clothes

we        bought        white        shoes        yesterday

i        like        your        clothes



What are APTs?

!7

we        folded        the        dry        clean        clothes

we        bought        white        shoes        yesterday

i        like        your        clothes

he        folded        the        white        sheets



What are APTs?

!7

we        folded        the        dry        clean        clothes

we        bought        white        shoes        yesterday

i        like        your        clothes

he        folded        the        white        sheets

nsubj

dobj det

amod

amod

ROOT



What are APTs?

!7

we        folded        the        dry        clean        clothes

we        bought        white        shoes        yesterday

i        like        your        clothes

he        folded        the        white        sheets

nsubj

dobj det

amod

amod

ROOT

nsubj amod

dobj
nmod:tmod

ROOT



What are APTs?

!7

we        folded        the        dry        clean        clothes

we        bought        white        shoes        yesterday

i        like        your        clothes

he        folded        the        white        sheets

nsubj

dobj det

amod

amod

ROOT

nsubj amod

dobj
nmod:tmod

ROOT

nsubj

dobj

nmod:poss

ROOT



What are APTs?

!7

we        folded        the        dry        clean        clothes

we        bought        white        shoes        yesterday

i        like        your        clothes

he        folded        the        white        sheets

nsubj

dobj det

amod

amod

ROOT

nsubj amod

dobj
nmod:tmod

ROOT

nsubj

dobj

nmod:poss

ROOT

nsubj
amod

det
dobj

ROOT



What are APTs?

!7

we        folded        the        dry        clean        clothes

we        bought        white        shoes        yesterday

i        like        your        clothes

he        folded        the        white        sheets

nsubj

dobj det

amod

amod

ROOT

nsubj amod

dobj
nmod:tmod

ROOT

nsubj

dobj

nmod:poss

ROOT

nsubj
amod

det
dobj

ROOT

Want to build 
APTs for the 

adjective white 
and the noun 

clothes



What are APTs?

!7

we        folded        the        dry        clean        clothes

we        bought        white        shoes        yesterday

i        like        your        clothes

he        folded        the        white        sheets

nsubj

dobj det

amod

amod

ROOT

nsubj amod

dobj
nmod:tmod

ROOT

nsubj

dobj

nmod:poss

ROOT

nsubj
amod

det
dobj

ROOT

Want to build 
APTs for the 

adjective white 
and the noun 

clothes



What are APTs?

!7

we        folded        the        dry        clean        clothes

we        bought        white        shoes        yesterday

i        like        your        clothes

he        folded        the        white        sheets

nsubj

dobj det

amod

amod

ROOT

nsubj amod

dobj
nmod:tmod

ROOT

nsubj

dobj

nmod:poss

ROOT

nsubj
amod

det
dobj

ROOT

Want to build 
APTs for the 

adjective white 
and the noun 

clothes



What are APTs?

!8



What are APTs?

!8

we        folded        the        clean        clothes

nsubj

dobj det

amod

: :: :dry



What are APTs?

!8

we        folded        the        clean        clothes

nsubj

dobj det

amod

: :: :dry
ANCHOR



What are APTs?

!8

Aggregating 
lexemes with 

identical paths

we        folded        the        clean        clothes

nsubj

dobj det

amod

: :: :dry
ANCHOR



What are APTs?

!8

Aggregating 
lexemes with 

identical paths

we        folded        the        clean        clothes

nsubj

dobj det

amod

: :: :dry
ANCHOR

we        folded        the         :        clean        clothes

nsubj

dobj

det

amod

: :: :dry
i

:
like your clothes

nmod:poss

ANCHOR



What are APTs?

!8

Aggregating 
lexemes with 

identical paths

we        folded        the        clean        clothes

nsubj

dobj det

amod

: :: :dry
ANCHOR

we        folded        the         :        clean        clothes

nsubj

dobj

det

amod

: :: :dry
i

:
like your clothes

nmod:poss

ANCHOR

nmod:poss

Growing the 
APT as 
needed



What are APTs?

!9



What are APTs?

!9

we        bought        :        white        shoes        yesterday

nsubj amod

dobj

nmod:tmod



What are APTs?

!9

we        bought        :        white        shoes        yesterday

nsubj amod

dobj

nmod:tmod

ANCHOR



What are APTs?

!9

we        bought        :        white        shoes        yesterday

nsubj amod

dobj

nmod:tmod

he

det

folded the white sheets : ANCHOR



What are APTs?

!9

• Anchor is placed at every lexeme in a sentence during processing

we        bought        :        white        shoes        yesterday

nsubj amod

dobj

nmod:tmod

he

det

folded the white sheets : ANCHOR



What are APTs?

!9

• Anchor is placed at every lexeme in a sentence during processing

• One APT per lexeme

we        bought        :        white        shoes        yesterday

nsubj amod

dobj

nmod:tmod

he

det

folded the white sheets : ANCHOR



What are APTs?

!9

• Anchor is placed at every lexeme in a sentence during processing

• One APT per lexeme

• APTs are not a vector space per se, but define a graph

we        bought        :        white        shoes        yesterday

nsubj amod

dobj

nmod:tmod

he

det

folded the white sheets : ANCHOR



What are APTs?

!9

• Anchor is placed at every lexeme in a sentence during processing

• One APT per lexeme

• APTs are not a vector space per se, but define a graph
• Vertices contain lexemes

we        bought        :        white        shoes        yesterday

nsubj amod

dobj

nmod:tmod

he

det

folded the white sheets : ANCHOR



What are APTs?

!9

• Anchor is placed at every lexeme in a sentence during processing

• One APT per lexeme

• APTs are not a vector space per se, but define a graph
• Vertices contain lexemes
• Edges are dependency relations

we        bought        :        white        shoes        yesterday

nsubj amod

dobj

nmod:tmod

he

det

folded the white sheets : ANCHOR
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• All edges are bi-directional (see APT for white)

• Feature spaces of words with different grammatical roles are quite different

• Lets vectorise them…

• Suppose we want to compose the AN phrase white clothes
white clothes

amod
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white clothes

:clean amod:wet

amod:shoes :dress

amod.dobj:wear dobj:wear

amod.dobj.nsubj:coat dobj.nsubj:actor

Paths don’t align :(!

• Can’t leverage distributional commonalities between white and clothes
• Need a mechanism for aligning representations with different 

grammatical roles before composition
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needs to happen in 
inverse direction to 
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• See Weir et al., 
(2016) for full 
details
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Paths now aligned \o/!
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white clothes
Composition by union Composition by intersection

amod:clean
amod:wet
:shoes
:dress
dobj:wear dobj:wear
dobj.nsubj:coat
dobj.nsubj:actor

Composed 
APT treated 
as a noun
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• MEN (Bruni et al., 2012), containing 3000 word pairs 

• SimLex-999 (Hill et al., 2015), containing 999 word pairs

• ML2010 (Mitchell & Lapata, 2010), containing 108 adjective-noun, 108 noun-noun, and 108 
verb-object pairs (324 phrase pairs in total)

• Comparing human similarity ratings between words or phrases, to model similarity estimates by 
calculating Spearman’s 𝞺

• money - cash: 0.91

• forest - graveyard: 0.19

• vast amount - large quantity: 0.96

• little room - similar result: 0.17

• Vectorised order 2 APT space from the BNC, using PPMI as lexical association function
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*) using 50dim pre-trained word vectors from the BNC (Hashimoto et al., 2014)

• The results are…well…pretty underwhelming

• Nice theory, but doesn’t quite work out of the box - whats the problem?
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• Vectorised space of an APT model derived from the BNC has ~820k 
dimensions, the density of the co-occurrence matrix is 0.00058 ("half 
a per mill")

• Due to modelling the dependency relation in a co-occurrence, the sparsity 
effect is amplified

• For example fish as object of eat and fish as subject of eat are 
modelled as two distinct contexts 

• As a consequence, so is the “curse of dimensionality”, as there are fewer 
observations per dimension in the data 

• Are the representations too sparse to be useful?
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hypernyms, co-hyponyms, meronyms, attributes (adjectives), events (verbs), 
and random lexemes for each PoS (NN, JJ, VB)

• Create box plot of the distribution of similarities per relation type - illustrates 
the bias towards any relation type in the distributional space

• Previous results found that typed DSMs have a bias towards co-hyponyms 
and hypernyms (Peirsman, 2008; Baroni & Lenci, 2011, Levy & Goldberg, 
2014)

• If the APT space is too sparse to represent anything meaningful, we would 
expect to see (more or less) a uniform similarity distribution across all 
semantic relations
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• Not so random really

• While its very sparse, the 
distributional space is still 
intact

• Results follow previous 
findings for typed DSMs

• Distributional space 
favours co-hyponymy 
and to a lesser extend 
hypernymy

co-hyponyms

hypernyms

random nouns
sparsity?
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So what do we do?
• Cannot use standard dimensionality reduction techniques 

(e.g. SVD, NMF, …) because distributional composition 
relies on the explicit structure of the space

• Distributional composition is based on aligning the 
representations of words with different grammatical roles 
(e.g. adjectives and nouns) - not obvious/straightforward 
how to achieve that in a latent space

• Instead, leverage the distributional neighbourhood and 
explicitly infer co-occurrences from similar 
representations.
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Distributional Inference
• Initial idea based on work by Essen & Steinbiss (1992) and 

Dagan et al., (1993) for smoothing language models

• For any lexeme w, calculate its nearest neighbours and 
add features from the neighbours to w

• ~Soft clustering of the distributional space, every lexeme is 
represented as the weighted average of its neighbourhood

• The algorithm isn’t just applicable to APTs but represents a 
general mechanism for enriching the representations in a 
sparse space (Kober et al., 2016)
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Lexeme Neighbours Inferred co-occurrences

magazine newspaper, journal, paper dobj:sell, nsubj:report, amod:daily

cat dog, rabbit, pet dobj:walk, nsubj:bark, amod:hot

car vehicle, lorry, bus amod:four-wheel, amod:horse-drawn, amod:military

• Cats bark? Well…not so sure really…
• With too many neighbours might infer that there are horse-drawn cats or military cats
• The inference procedure does not assess the suitability of a feature
• But would be useful to have some filtering mechanism (more on that later)
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• Can leverage offset views to enrich elementary representations (Kober et al., 2017)

• Enables inferring knowledge on a more abstract level
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• Realise that “a thing that can be stolen” is similar to “a precious thing” and add 
observed features from “a precious thing” to “a thing that can be stolen” 

• (In the given APT space from the BNC, the two offset views where 50% more similar 
to each other in terms of the cosine of their vector representations than the original 
representations)

• Create a noun offset view (along its amod edge) for the adjective precious 
(representing “a precious thing”)

• Create a noun offset view (along its dobj edge) for the verb stolen (representing 
“a thing that can be stolen”)
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• Results substantially improved (especially for the composition task)

*) Can improve performance to up to 0.60 with a slightly different inference process; see Kober (2017)

• Even with more data, distributional inference is helpful (see Kober 2017)

• Sparsity has a large impact, but distributional inference can successfully address it
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• Can address the issue of data sparsity up to some point

• Distributional Inference suffers from the “cold start” problem

• Trying to improve a distributional space on the basis of the same 
space that we know is slightly dodgy

• Scalability issues

• Difficult to scale beyond 3-4 word phrases, because the distributional 
space is still mostly made up of unigrams, so its hard to find “good 
neighbours” for longer phrases from which to infer useful features from

• Could compose all high-frequency n-1 grams and add them to the 
space to build better representations for n grams, but that has severe 
scalability issues.
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Conclusion
• APTs as a compositional distributional semantic model

• Semantic APT space is very sparse, resulting in low performance on 
standard lexical and phrasal tasks

• Proposed distributional inference (and subsequently generalised to offset 
inference) to address the sparsity issue

• Highlighted relation between distributional composition and distributional 
inference in APTs

• Performance - especially on phrasal composition tasks - substantially 
improved
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