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Based on the product of combining elementary word
representations

Based on the co-occurrence statistics of words in a corpus

The study of the meaning of words and phrases in a language

e Motivation
e Open question what composition in distributional semantics means

e EXxisting models use linear algebraic operations in a vector space populated by words to
mash together word representations

e Several shortcomings, e.g. commutativity for simple composition functions (e.g. point
wise addition); or reliance on task specific training data for complex neural network
based models

e APTs treating distributional composition as a process of contextualisation (Weir et al., 2016)
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dob7 det
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we folded the clean clothes :
ANCHOR
Aggregating
lexemes with
dobj identical paths

nsubj
we folded the : clean clothes .
: : ; : dry : ANCHOR
i like your clothes
Growing the
APT as
needed
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we bought : white shoes yesterday
he folded the |white sheets

« Anchor is placed at every lexeme in a sentence during processing
* One APT per lexeme

- APTs are not a vector space per se, but define a graph
* Vertices contain lexemes

- Edges are dependency relations
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All edges are bi-directional (see APT for white)

Feature spaces of words with different grammatical roles are quite different

amod

Suppose we want to compose the AN phrase white clothes RN

white clothes
Lets vectorise them...

10




What are APTs?



What are APTs?

shoes

® amod noise

compound

amod

11



What are APTs?

clothes

shoes .

silk

® amod noise

compound

white dress compound
dry clothes
clean

dobj

wear
appear

11



What are APTs?

white clothes
:clean amod:wet
amod:shoes :dress
amod.dobj:wear dobj:wear

amod.dobj.nsubj:coat dobj.nsubj:actor

11



What are APTs?

dol

s
prefer
I nsul

Paths don’t align :(!

white \ clothes

EI:Iean et
shoes Elress

amod .dobjlwear objiwear
amod.dobj.nsubjgcoat |dobj.nsubjjactor

Q.

11



What are APTs?

shoes
mod noise
ress
AMO!
o5
wear
P
dol

refer
I nsul

Paths don’t align :(!

white \ clothes

EI:Iean et

amodjshoes Elress
amod .dobjiwear dobjiwear

amod.dobj.nsubjgcoat |dobj.nsubjjactor

- Can’t leverage distributional commonalities between white and clothes

11



What are APTs?

shoes
mod noise
ress
AMO!
o5
wear
P
dol

refer
I nsul

Paths don’t align :(!

white \ clothes

EI:Iean et

amodjshoes Elress
amod .dobjiwear dobjiwear

amod.dobj.nsubjgcoat |dobj.nsubjjactor

- Can’t leverage distributional commonalities between white and clothes

* Need a mechanism for with different
grammatical roles before composition
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e Can now compose the two aligned APTs
* Either by taking the or the of their aligned features

e PPMI weights associated with distributional features can be combined in the
usual ways (min, max, point wise addition/multiplication, etc)

e Composition is not commutative (due to offsetting and taking syntax into

account)
Composed white clothes
APT treated
as anoun amod:clean
amod:wet
hoes
dress
dobj:wear dobj:wear

dobj.nsubj:coat
dobj.nsubj:actor
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e Comparing between words or phrases, to model similarity estimates by
calculating Spearman’s p

* money - cash: 0.91

forest - graveyard: 0.19

vast amount - large quantity: 0.96

little room - similar result: 0.17

» \ectorised APT space from the BNC, using as lexical association function
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*) using 50dim pre-trained word vectors from the BNC (Hashimoto et al., 2014)

* The results are...well...pretty underwhelming

- Nice theory, but doesn’t quite work out of the box - whats the problem?
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 Due to modelling the dependency relation in a co-occurrence, the sparsity
effect is amplified

e For example as object of and as subject of are
modelled as two distinct contexts

e As a consequence, so is the “curse of dimensionality”, as there are fewer
observations per dimension in the data

e Are the representations too sparse to be useful?
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e Compare 200 concrete nouns to a number of different relata, including
, , meronyms, (adjectives), (verbs),
and random lexemes for each PoS (NN, JJ, VB)

e Create box plot of the distribution of similarities per relation type - illustrates
the bias towards any relation type in the distributional space

* Previous results found that typed DSMs have a bias towards
and (Peirsman, 2008; Baroni & Lenci, 2011, Levy & Goldberg,
2014)

e |f the APT space is too sparse to represent anything meaningful, we would
expect to see (more or less) a uniform similarity distribution across all
semantic relations
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e Cannot use standard dimensionality reduction techniques
(e.g. SVD, NMF, ...) because distributional composition
relies on the of the space

e Distributional composition is based on
of words with different grammatical roles
(e.g. adjectives and nouns) - not obvious/straightforward
how to achieve that in a latent space

e |nstead, leverage the and
explicitly infer co-occurrences from similar
representations.
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* |nitial idea based on work by Essen & Steinbiss (1992) and
Dagan et al., (1993) for smoothing language models

* For any lexeme w, calculate its nearest neighbours and
add features from the neighbours to

e ~Soft clustering of the distributional space, every lexeme is
represented as the weighted average of its neighbourhood

* The algorithm isn’t just applicable to APTs but represents a
general mechanism for enriching the representations in a
sparse space (Kober et al., 2016)
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* Cats bark? Well...not so sure really...
* With too many neighbours might infer that there are horse-drawn cats or military cats
* The inference procedure does not assess the suitability of a feature
* But would be useful to have some filtering mechanism (more on that later)
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Standard algorithm neglects the of APTs

e Can leverage to enrich elementary representations (Kober et al., 2017)

e Enables inferring knowledge on a more abstract level

Create a noun offset view (along its edge) for the adjective precious
(representing “ ”)

Create a noun offset view (along its edge) for the verb stolen (representing
(1 ”)

Realise that ”is similar to * ” and add
observed features from ”t0 “ ”

(In the given APT space from the BNC, the two offset views where
to each other in terms of the cosine of their vector representations than the original

representations)
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e Both mechanisms realised by the same operation (offset followed by
a merge)

e Can use in a complementary manner; distributional inference as a
process of co-occurrence embellishment, distributional composition
as a process of co-occurrence filtering

e Using composition to filter noisy inferences that do not make sense in
the given context (no more barking cats, horse-drawn cats or military
cats)

e Inference mechanism falls out of the existing APT theory, no need to
fiddle around with the formulation
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WS353 (Rel) 0.42 0.24 0.35 0.35

MEN 0.63 0.36 0.43 0.49
SimLex-999 0.25 0.22 0.25 0.30*

ML10 - AN

ML10 - NN
ML10 - VO

*) Can improve performance to up to 0.60 with a slightly different inference process; see Kober (2017)

- Results substantially improved (especially for the composition task)

« Sparsity has a large impact, but distributional inference can successfully address it

- Even with more data, distributional inference is helpful (see Kober 2017)
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e Can address the issue of data sparsity up to some point
e Distributional Inference suffers from the “cold start” problem

* Trying to improve a distributional space on the basis of the same
space that we know is slightly dodgy

e Scalability issues

e Difficult to scale beyond 3-4 word phrases, because the distributional
space is still mostly made up of unigrams, so its hard to find “good
neighbours” for longer phrases from which to infer useful features from

 Could compose all high-frequency and add them to the
space to build better representations for , but that has severe

scalability issues.
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Conclusion

APTs as a compositional distributional semantic model

Semantic APT space is , resulting in low performance on
standard lexical and phrasal tasks

Proposed (and subsequently generalised to offset
iInference) to address the sparsity issue

Highlighted relation between distributional composition and distributional
inference in APTs

Performance - especially on phrasal composition tasks -

35



Thats it, I'm done!



Thats it, I'm done!

36



Thats it, I'm done!

Q & (maybe) A

tkober@inf.ed.ac.uk
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