Aligning Packed Dependency Trees: a theory of composition for distributional semantics

JULIE WEEDS, UNIVERSITY OF SUSSEX, SPRING 2017

Based on joint work with David Weir, Jeremy Reffin and Thomas Kober

Overview

What is compositional distributional semantics?

Existing methods of composition

Elementary Anchored Packed Trees (APTs)

Composition (as Contextualisation)

Similarity

Experimental results

Conclusions, applications and further work

Semantics \rightarrow the study of the meanings of words and phrases in a language

Distributional \rightarrow based on the position, arrangement or frequency of occurrence of members of a group throughout some space

Semantics \rightarrow the study of the meanings of words and phrases in a language

Compositional \rightarrow based on the product of mixing or combining various elements or ingredients

Distributional \rightarrow based on the position, arrangement or frequency of occurrence of members of a group throughout some space

Semantics \rightarrow the study of the meanings of words and phrases in a language

Distributional Semantics 101

The distributional hypothesis:words that occur in the same contexts tend to have similar meaning (Harris, 1954) You shall know a word by the company it keeps (Firth, 1957)

Distributional Semantics 101

The distributional hypothesis:words that occur in the same contexts tend to have similar meaning (Harris, 1954) You shall know a word by the company it keeps (Firth, 1957)

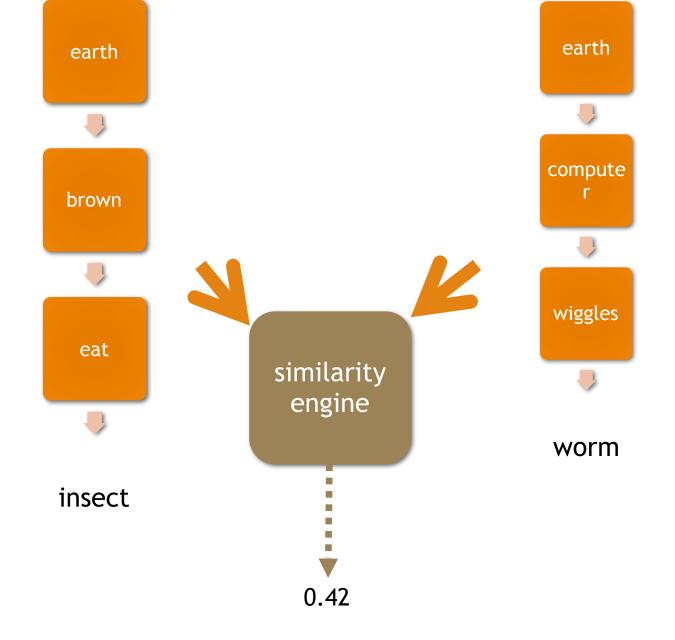
Both count-based and prediction-based methods of constructing distributional word representations probe the underlying cooccurrence statistics of the corpus (Pennington et al. 2014)

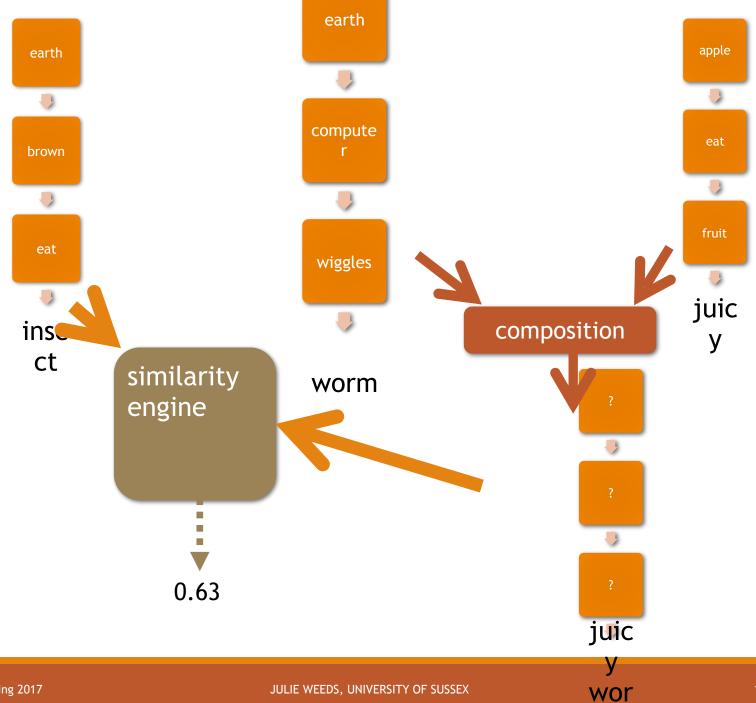
Distributional Semantics 101

The distributional hypothesis:words that occur in the same contexts tend to have similar meaning (Harris, 1954) You shall know a word by the company it keeps (Firth, 1957)

Both count-based and prediction-based methods of constructing distributional word representations probe the underlying cooccurrence statistics of the corpus (Pennington et al. 2014)

The representation of a word is determined by the **CONTEXTS** in which it occurs.

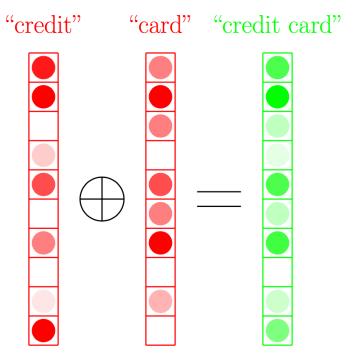




Vector-based models of composition

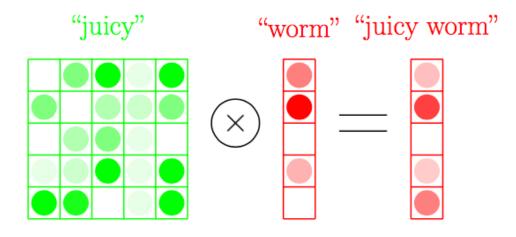
- e.g., Mitchell & Lapata (2008, 2010)
- Easy to implement.
- Word representations typically directly derived from corpus (either by counting or predicting)
- Hard to beat "naive" operations such as add (union) and multiply (intersect)
- Hard to capture interesting linguistic properties such as non-commutativity e.g.,

credit card \neq card credit



Non vector-based models of composition

- •e.g., Baroni and Zamperelli (2010) and Grefenstette et al. (2013) borrow ideas from formal semantics
- Words may be of different types
 - e.g., an adjective is a function which maps a noun to a compound noun
 - juicy(worm) \rightarrow juicy_worm
 - adjectives modelled by matrices, nouns modelled by vectors



- At least some word representations typically learnt from observed phrasal representations
- Lots of parameters!

The representation of a word is the contexts in which it occurs.

The representation of a word is the contexts in which it occurs.

>The representation of a phrase is the contexts in which it occurs.

- The representation of a word is the contexts in which it occurs.
- >The representation of a phrase is the contexts in which it occurs.
- ≻The representation of a sentence is the contexts in which it occurs.

The representation of a word is the contexts in which it occurs.

>The representation of a phrase is the contexts in which it occurs.

>The representation of a sentence is the contexts in which it occurs.

• Should the space for sentences be the same as the space for words?

The representation of a word is the contexts in which it occurs.

>The representation of a phrase is the contexts in which it occurs.

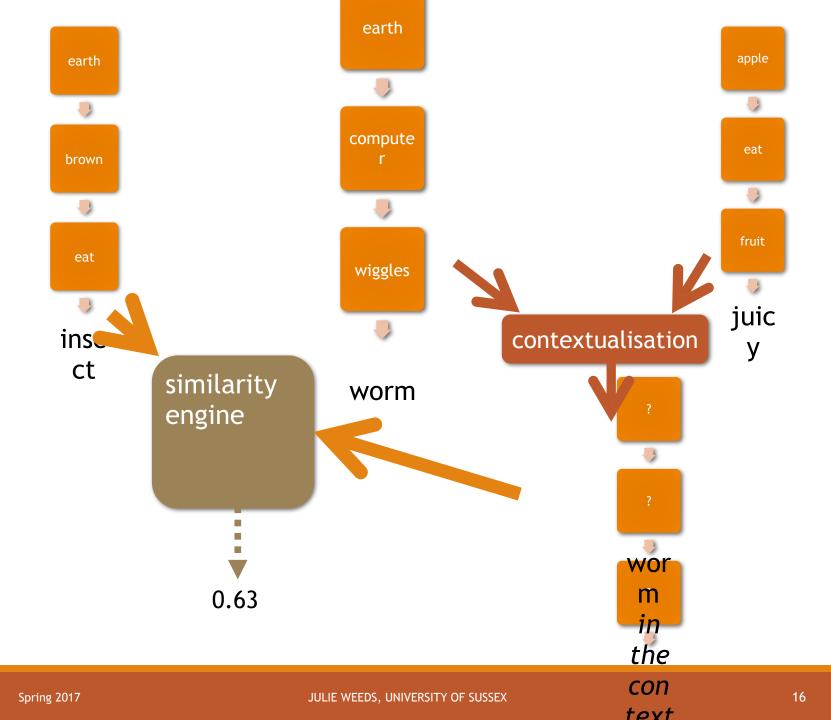
>The representation of a sentence is the contexts in which it occurs.

Should the space for sentences be the same as the space for words?

When we compose meanings, are we building a representation of something larger or smaller?

Anchored Packed Tree (APT) framework (Weir et al 2016)

- Composition is a process of mutual disambiguation or contextualisation
- Representation of a sentence is the representation of each word in the context of that sentence
- Structured, syntax-driven representations allows phrases with different structures (e.g., "credit card" vs "card credit") to have different representations
- Uniform nature of representations for lexemes, phrases and sentences allow for direct comparison of phrases of different lengths



Definition of context?

What is the context of "ball" in the following sentence?

•The cricket **ball** hit the castle wall.

Definition of context?

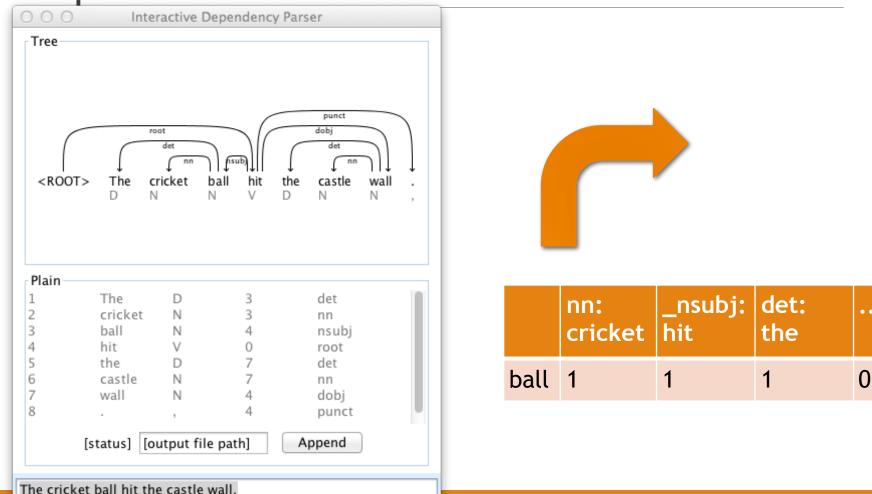
What is the context of "ball" in the following sentence?

•The cricket **ball** hit the castle wall.

•Proximity? e.g., Within n words, in the same sentence, in the same document?

	the	cricket	hit	castle	wall	••••
ball	2	1	1	1	1	0

Dependency-based representations of context

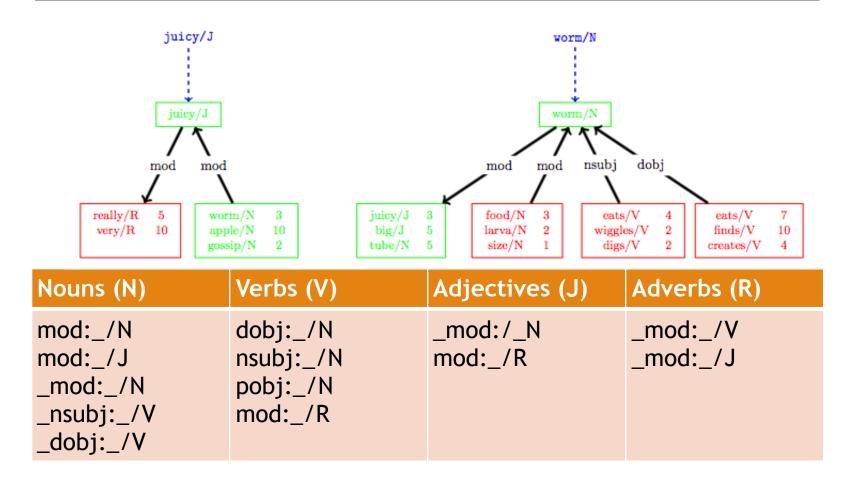


Which are the *best* nearest noun neighbours of "ball"?

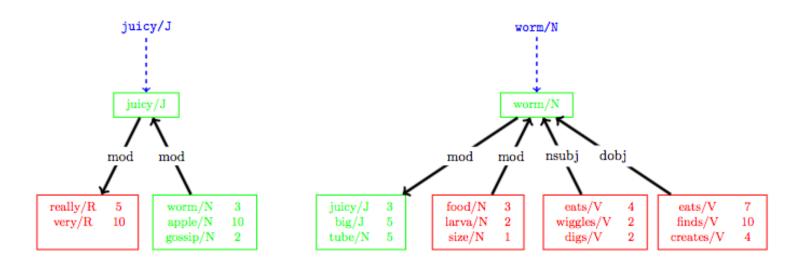
neighbour	similarity	
shot	0.17	
stick	0.16	
wheel	0.15	
shell	0.15	
piece	0.14	
puck	0.14	
bullet	0.14	
barrel	0.14	
ring	0.14	
projectile	0.14	

neighbour	similarity
run	0.15
game	0.15
season	0.14
play	0.14
quarter	0.13
kick	0.13
match	0.12
inning	0.12
minute	0.12
goal	0.11

Composing dependencybased representations



Composing dependencybased representations



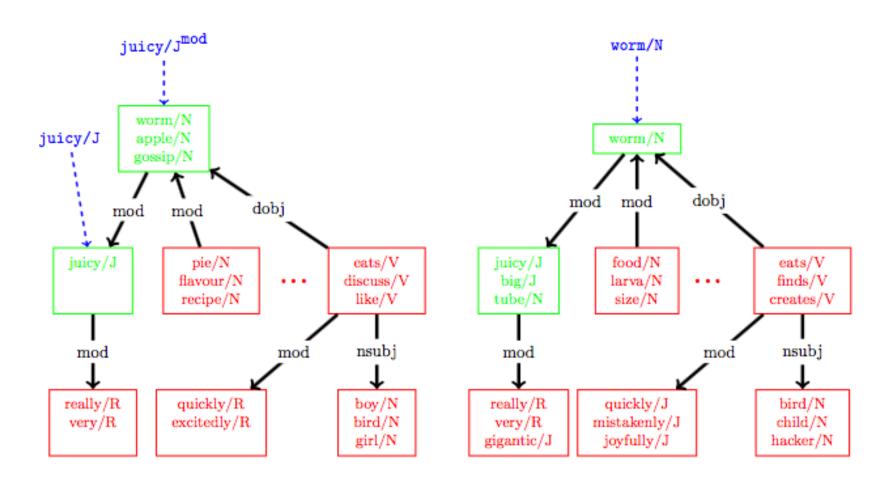
- difficult due to non-overlapping nature of feature types
- intersective methods \rightarrow empty representations
- additive methods → broad, non-comparable representations

APT intuition

_ a juicy worm

- consider words which are in the _dobj relation with worm
- consider words which are in the _dobj relation with words which are in the _mod relation with juicy

Aligned anchored packed trees



What kind of worm is a juicy worm?

Composition requires alignment of the APTs

juicy is in adjective space and worm is in noun

worm is the head of the phrase *juicy worm* so we offset *juicy* to make it look like a noun

If δ is the observed phrasal relation, offset all paths by prepending δ and applying reduction operation

The relation from *worm* to *juicy* is mod so we offset all of the paths in the elementary APT by mod to produce an offset-APT which aligns with noun APTs

A[juicy]	A[juicy] ^{mod}	W
<ɛ, juicy>	<mod,juicy></mod,juicy>	50
<mod,really></mod,really>	<mod.mod,really ></mod.mod,really 	5
<_mod,apple>	<ɛ,apple>	7
<_mod.dobj,eats>	<dobj,eats></dobj,eats>	10

Merging aligned APTs

 insert your favourite composition operation. This could be intersective (MIN, MULTIPLY) or more additive (ADD, MAX)

 Due to the asymmetric nature of the alignment, composition is not commutative even if a symmetric composition operation is used.

Similarity of APTs

- map APTs to vectors. Features/dimensions are the typed cooccurrences
- apply favourite measure of feature association e.g., PPMI
- optionally carry out feature selection or dimensionality reduction
- apply favourite similarity measure e.g. cosine

Disambiguation Examples: ADD

	Aligned: add		Unaligned: add	
shoot	green shoot	six-week shoot	green shoot	six-week shoot
shot leaf shooting fight scene video tour footage interview flower	shoot leaf flower fruit orange tree color shot colour cover	shoot tour shot break session show shooting concert interview leaf	shoot shot leaf shooting fight scene video tour flower footage	shoot shot shooting leaf scene video fight footage photo interview

Disambiguation Examples: MIN

	Aligned: min		Unaligned: min	
shoot	green shoot	six-week shoot	green shoot	six-week shoot
shot leaf shooting fight scene video tour footage interview flower	shoot leaf fruit stalk flower twig sprout bud shrub inflorescence	shoot photoshoot taping tour airing rehearsal broadcast session q&a post-production	shoot pyrite plosive handlebars annual roundel affricate phosphor connections reduplication	e/f uemtsu confederations shortlist all-ireland dern gerwen tactics backstroke gabler

Disambiguation Examples: ADD vs MIN

	Aligned: add		Aligned: min	
group	musical group	ethnic group	musical group	ethnic group
organization organisation company community corporation unit movement association society entity	group company band music movement community society corporation category association	group organization organisation community company movement society minority unit entity	group band troupe ensemble artist trio genre music duo supergroup	group community organization grouping sub-group faction ethnicity minority organisation tribe

Compositionality Detection (Weeds et al. 2017)

set of 90 compound nouns rated for compositionality / literality by humans (Reddy et al., 2011) on a scale of 0 to 5, e.g.,

climate change: 5gravy train: 0.3cocktail dress: 3

ASSUMPTION: using an effective method of composition, similarity of composed representations with observed phrasal representations will correlate with compositionality of compound

Experimental methodology

- 1. Build elementary representations for phrases and for lexemes
- 2. Compose lexemes to infer compositional representation of phrase
- 3. Compute similarity of observed and compositional representations
- 4. Compute correlation between computed similarity judgements and human judgements of compositionality

Results - APTs

Alignment	Comp. Op	Spearman's ρ	
Aligned	MIN	0.70	These res
Aligned	SUM	0.72*	by compo represent
Unaligned	MIN	0.72*	feature w
Unaligned	SUM	0.75*	standard
Hybrid	MIN	0.73*	
Hybrid	SUM	0.78*	

These results obtained by composing representations where feature weights are standard PPMI scores.

Differences > 0.005 are significant at the 95% level

* significantly higher than Reddy et al 2011 result (0.714) at 95% level (using ukWaC corpus, proximity vectors and likelihood ratio as feature association)

Results – Word2Vec

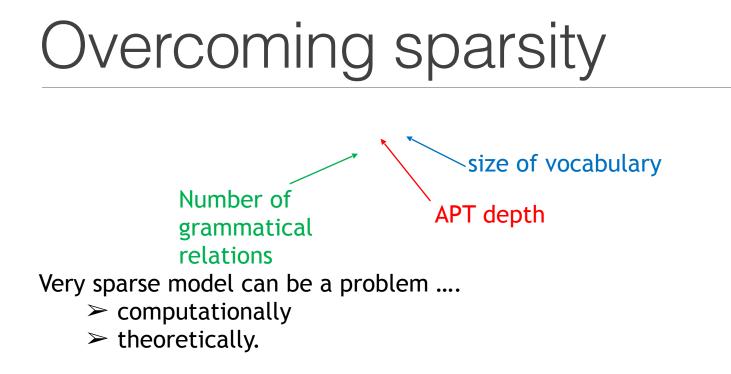
	•	Subsampling dilutes words which occur with a frequency greater than the threshold t	
Embedding method	t=10 ⁻³	t=10 ⁻⁴	t=10 ⁻⁵
cbow, 50d	0.73	0.65	0.62
cbow, 100d	0.74	0.65	0.64
cbow, 300d	0.70	0.70	0.67
skip-gram, 50d	0.59	0.64	0.62
skip-gram, 100d	0.62	0.64	0.64
skip-gram, 300d	0.63	0.64	0.68

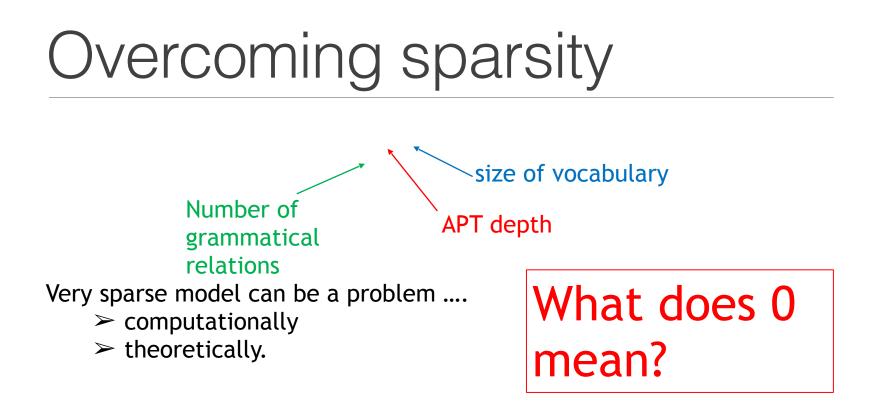
Comments

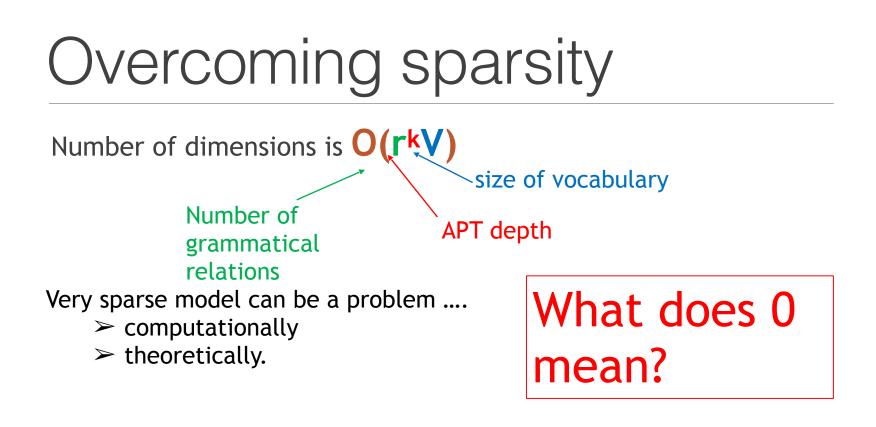
- Unaligned APTs (analogous to conventional dependency reps) do very well at this task - likely due to large proportion of NN relations
- Best performance using combination of aligned and unaligned APTs
- •ADD generally better than MIN (particularly for smaller corpus)
- Experiments with other corpora (e.g., wikipedia) show similar pattern of results and that the most notable factor in performance is size of corpus

Overcoming sparsity

Overcoming sparsity







Standard strategies to dealing with sparsity include

- \succ dimensionality reduction
- \succ smoothing

Distributional Inference (Kober et al. 2016)

Improve elementary representations using *distributional inference* (Dagan et al. 1994)

Add in to each elementary representation, cooccurrences which were observed with word's neighbours Build sparse APT representations, M
 For all w in M do:

 w' ← w × α
 for all n in neighbours(M,w) do
 w' ← w' + n

Hyper-parameters include:

> neighbourhood retrieval function, weighting of neighbours and original distrib

> similarity measure used, feature weighting used in similarity calculations

Word similarity experiments

	Without DI	With Dl	Benchmark word
MEN	0.63	0.68	similarity tasks which compare
SimLex-999	0.30	0.32	distributional
WordSim-353 (rel)	0.55	0.61	similarity with
WordSim-353 (sub)	0.75	0.76	human judgements of similarity

```
Neighbourhood retrieval function: static top 30

\alpha: 30

Similarity measure: cosine

Feature weighting: Shifted PPMI (k=40) with context distribution smoothing

(\alpha=0.75)

(Levy et al. 2015)
```

Phrase Similarity Benchmarks

		AN	NN	VO	Avg	
No DI	Union	0.45	0.43	0.37	0.42	Results on the
	Intersec t	0.38	0.44	0.36	0.39	phrase similarity
With DI	Union	0.45	0.45	0.38	0.43	benchmark task from
	Intersec t	0.50	0.49	0.43	0.47	Mitchell and Lapata (2010)
B&L 2012	-	0.48	0.50	0.35	0.44	
Hashimoto 2014 ** 0.52 0.46 0.45 0.48 * Blacoe and Lapata (2012): untyped VSM using multiplication as composition ** Hashimoto et al. (2014) : neural network based model (PAS-CLBLM with add)						

Conclusions

 the APT is a single structure which represent distributional semantics of lexemes, phrases and sentences

 definition of context is crucial: retention of higher-order grammatical structure enables syntax-sensitive composition

•APT composition captures mutual disambiguation (and generalisation)

Applications

- word sense induction
- semantic relation discovery
- sentence completion, parse reranking, language modelling
- paraphrase recognition, question answering

Further Work

- consider limitations in underlying grammar formalism
 - surface disparities in syntactic structure e.g., active vs passive
 - modifier scope (happiest blonde person = blonde happiest person)
- explore other grammar formalisms e.g., CCG
- investigate how to handle function words:- the dog vs a dog vs all dogs
- develop continuous model of syntax?
- combine with predictive approaches to learning word embeddings / dimensionality reduction

References 1

Baroni, Marco and Zamperelli, Roberto. 2010. Nouns are vectors, adjectives are matrices: representing adjective-noun constructions in semantic space. In *Proceedings of EMNLP*

Blaco, William and Lapata, Mirella. 2012. A comparison of vector-based representations for semantic composition. In *Proceedings of EMNLP*

Ferraresi, Adriano, Eros Zanchetta, Marco Baroni and Silvia Bernardini. 2008. Introducing and evaluating ukWaC, a very large web-derived corpus of English. In Proceedings of the WAC4 workshop at LREC.

Firth, J.R. 1957. A synopsis of linguistic theory 1930-1955. In Studies in Linguistic Analysis

Grefenstette, Ed, Dinum Georgiana, Zhang, Y-Z, Sadrzadeh, Mehrnoosh and Baroni, Marco. 2013. Multi-step regression learning for compositional distributional semantics. In *Proceedings* of ICWS.

Harris, Z. 1954. Distributional structure. In Word

Hashimoto, Kazuma, Pontus Stenetorp, Makoto Miwa and Yoshimasa Tsuruoka. 2014. Jointly learning word representations and composition functions using predicate-argument structures. In *Proceedings of EMNLP*

Kober, Thomas, Julie Weeds, Jeremy Reffin and David Weir. 2016. Improving sparse word representations with distributional inference for semantic composition. In *Proceedings of EMNLP*

References 2

Levy, Omar, Yoav Goldberg and Ido Dagan. 2015. Improving distributional similarity with lessons learned from word embeddings. In *Transactions of the Association for Computational Linguistics (TACL)*

Mitchell, Jeff and Lapata, Mirella. 2008. Vector-based Models of Semantic Composition. In *Proceedings of ACL*.

Mitchell, Jeff and Lapata, Mirella. 2010. Composition in Distributional Models of Semantics. In *Cognitive Science*.

Pennington, Jeffrey, Richard Socher and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representations. In *Proceedings of EMNLP*

Reddy, Siva, Diana McCarthy and Suresh Manandhar. 2011. An empirical study on compositionality in compound nouns. In *Proceedings of IJCNLP*

Weir, David, Julie Weeds, Jeremy Reffin and Thomas Kober. 2016. Aligning packed dependency trees: a theory of compositional for distributional semantics. In *Compositional Linguistics*

Weeds, Julie, Thomas Kober, Jeremy Reffin and David Weir. 2017. When a red herring is not a red herring: using compositional methods to detect non-compositional phrases. In *Proceedings of EACL*